Skip to main content

Upcoming Events

C

The Scintillating Science of Long-Baseline Neutrino Experiments by Denver Whittington

Feb 23, 2017, 3:30 PM-4:45 PM

202 Physics Bldg.

Refreshments at 3:30 pm and the talk starting at 3:45 pm

Host: Prof. Mitchell Soderberg/ Contact: Yudaisy Salomón Sargentón, 315-443-5960

Neutrinos are perhaps the least understood members of the Standard Model of particle physics, but that is rapidly changing. Precision measurements from long-baseline detectors are revealing details about their interactions, masses, and mixing properties. The NOvA experiment features a 14 kiloton liquid scintillator detector to study neutrinos after an 800 kilometer journey. NOvA is poised to resolve the uncertainty in the neutrino mass hierarchy and provide new insights into neutrino mixing parameters. The planned Deep Underground Neutrino Experiment (DUNE), featuring 40 kilotons of liquid argon instrumented with time projection chambers and scintillation counters, will probe even further and make the definitive measurement of charge-parity symmetry violation in the lepton sector.

This colloquium will present an overview of neutrino oscillations and the physics reach afforded by these long-baseline neutrino experiments. I will discuss recent and upcoming results from NOvA, facilitated by advanced image recognition tools for event classification. I will also cover the design and prospects of DUNE, including some of the unique challenges of scintillation light detection in liquid argon.

CM

Imaging currents in two-dimensional quantum materials - by Katja Nowack

Feb 24, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Britton Plourde | Contact: Tyler Engstrom, taengstr@syr.edu

Magnetic imaging is uniquely suited to the non-invasive imaging of current densities, particularly in two-dimensional devices. In this talk, I will showcase this approach by discussing measurements on HgTe quantum well devices in the quantum spin Hall (QSH) regime. In a nutshell, we scan a superconducting quantum interference device (SQUID) to obtain maps of the magnetic field produced by the current flowing in a device. From the magnetic image we reconstruct a two-dimensional current distribution with a spatial resolution of several microns. This allows us to directly visualize that most of the current is carried by the edges of the quantum well devices when tuned into their insulating gaps - a key feature of the QSH state. I will discuss routes towards improving the spatial resolution of the current images to sub-micron length scales through a combination of improved image reconstruction and smaller sensor sizes and outline opportunities for current imaging in a range of materials including graphene and magnetically doped topological insulators.

C

TBD by Yuval Grossman

Mar 9, 2017, 3:30 PM-5:00 PM

202 Physics Bldg.

Refreshments at 3:30 pm and the talk starting at 3:45 pm

Contact: Yudaisy Salomón Sargentón, 315-443-5960

C

TBD by Mukund Vengalattore

Mar 23, 2017, 3:30 PM-4:45 PM

202 Physics Bldg.

Host: Prof. Matthew LaHaye / Contact: Yudaisy Salomón Sargentón, 315-443-5960

CM

TBD - by Chih-Kuan Tung

Mar 24, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Lisa Manning | Contact: Tyler Engstrom, taengstr@syr.edu

HE

TBD by Mustafa Amin

Mar 24, 2017, 12:00 PM-2:00 PM

208 Physics Bldg

Host: Prof. Scott Watson / Contact: Yudaisy Salomón Sargentón, 315-443-5960

HE

TBD by Joaquin Drut

Mar 27, 2017, 2:00 PM-3:00 PM

202 Physics Bldg.

Host: Prof. Simon Catterall / Contact: Yudaisy Salomón Sargentón, 315-443-5960

C

TBD by Neil Donahue

Mar 30, 2017, 3:30 PM-4:45 PM

202 Physics Bldg.

Host: Prof. Matthew Rudolph / Contact: Yudaisy Salomón Sargentón, 315-443-5960

CM

TBD - by Irmgard Bischofberger

Mar 31, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Joseph Paulsen | Contact: Tyler Engstrom, taengstr@syr.edu

C

TBD by Peter Lepage

Apr 6, 2017, 3:30 AM-5:00 PM

202 Physics Bldg.

Refreshments at 3:30 pm and the talk starting at 3:45 pm

Contact: Yudaisy Salomón Sargentón, 315-443-5960

CM

TBD - by Paul Janmey

Apr 7, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Jen Schwarz | Contact: Tyler Engstrom, taengstr@syr.edu

HE

TBD by A.P. Balachandran

Apr 10, 2017, 2:00 PM-3:00 PM

202 Physics Bldg.

Host: Prof. Simon Catterall / Contact: Yudaisy Salomón Sargentón, 315-443-5960

C

TBD by Rachel Rosen

Apr 13, 2017, 3:30 PM-5:00 PM

202 Physics Bldg.

Refreshments at 3:30 pm and the talk starting at 3:45 pm

Host: Prof. Scott Watson / Contact: Yudaisy Salomón Sargentón, 315-443-5960

CM

TBD - by Daniel Sussman

Apr 14, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Jen Schwarz | Contact: Tyler Engstrom, taengstr@syr.edu

HE

TBD by Aarti Veernala

Apr 17, 2017, 2:00 PM-3:00 PM

202 Physics Bldg.

Host: Prof. Simon Catterall / Contact: Yudaisy Salomón Sargentón, 315-443-5960

C

TBD by Mats Selen

Apr 20, 2017, 3:30 PM-5:00 PM

202 Physics Bldg.

Refreshments at 3:30 pm and the talk starting at 3:45 pm

Host: Prof. Gianfranco Vidali / Contact: Yudaisy Salomón Sargentón, 315-443-5960

CM

TBD - by Arshad Kudrolli

Apr 21, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Joseph Paulsen | Contact: Tyler Engstrom, taengstr@syr.edu

HE

TBD by Prateek Agrawal

Apr 24, 2017, 2:00 PM-3:00 PM

202 Physics Bldg.

Host: Prof. Jay Hubisz / Contact: Yudaisy Salomón Sargentón, 315-443-5960

C

TBD by Brian Nord

Apr 27, 2017, 3:30 PM-5:00 PM

202 Physics Bldg.

Refreshments at 3:30 pm and the talk starting at 3:45 pm

Host: Prof. Scott Watson / Contact: Yudaisy Salomón Sargentón, 315-443-5960

CM

TBD - by Madhav Mani

Apr 28, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Lisa Manning | Contact: Tyler Engstrom, taengstr@syr.edu

CM

TBD - by Pankaj Mehta

May 5, 2017, 11:00 AM-12:00 PM

Rooms 202/204

Host: Lisa Manning | Contact: Tyler Engstrom, taengstr@syr.edu

HE

Cosmological Seed Magnetic Field from Inflation by Bharat Ratra

Sep 18, 2017, 2:00 PM-3:00 PM

202 Physics Bldg.

Host: Prof. Scott Watson / Contact: Yudaisy Salomón Sargentón, 315-443-5960

A cosmological magnetic field of nG strength on Mpc length scales could be the seed magnetic field needed
to explain observed few microG large-scale galactic magnetic fields. I first briefly review the observational
and theoretical motivations for such a seed field, two galactic magnetic field amplification models, and some
non-inflationary seed field generation scenarios. I then discuss an inflation magnetic field generation model.
I conclude by mentioning possible extensions of this model as well as potentially observable consequences.